European heatwave in July 2006: how local processes amplify favorable large-scale conditions

M. Chiriaco⁽¹⁾, S. Bastin⁽¹⁾, P. Yiou⁽²⁾, M. Haeffelin⁽³⁾, J.-C. Dupont⁽⁴⁾, M. Stéfanon⁽⁵⁾

(1) LATMOS; (2) LSCE, (3) LMD, (4) IPSL, (5) ESE; Contact: marjolaine.chiriaco@latmos.ipsl.fr

European heatwaves : what are the ingredients?

Particular large-scale conditions

(Fendale & Shukla 2007)

- -quasi-stationary anticyclonic circulation → subsidence & warm-air advection (Fischer et al. (2007)
- -It induces high T collocalized with fair weather & high P (Stefanon et al. 2012)
- -Warm Atlantic SSTs (Sutton & Hodson 2005) and/or Mediterranean ones that favor weather regime excitation in summer
- 2 Specific scheme of land/atmosphere interaction Precipitation Less Hot soil Hot PBL deficit evapotranspiration With a spatial (Southern) More sensible Less latent and temporal (a season Dry soil cooling, less heat flux before) offset (Vautard et clouds al. 2007) Schär et al. 1999

+ crucial role of the partitioning between latent and sensible heat fluxes, controlled by soil moisture (Fischer et al. 2012)

Objective of this study

- ➤ Which of the ingredients listed next for 2006 July heatwave?
- Does the Schär et al. 1999 scheme needs
- new adjustments? What is the particular role of clouds?

from observations?

European summer T

Tools

Observations: From **SIRTA** (http://sirta.ipsl.polytechnique.fr), a ground-based atmospheric observatory near Paris, collecting data (in- situ, active and passive remote-sensing...) since 2002: about 10 years of a completely resolved atmospheric column

- !! We use reanalysis of observations : one single netCDF file, hourly averaged, homogeneous data, quality control ++
- (http://climserv.ipsl.polytechnique.fr/cfmip-obs.html)

Simulations:

Using CORDEX simulations, WRF regional model: 28 vertical levels, ERA-Interim forcing, horizontal resolution 20 km, extraction of the SIRTA grid-point

- Simu. 1 (1989 2011): RUC surface scheme, soil moisture can evolve freely
- -Simu. 2 (1989 2008): DIF surface scheme, prescribed soil moisture (wintertime value)

Method:

In order to determine if the different variables anomalies are explained or not by large-scale circulation variability, the method of analogs (Yiou et al. 2007) is applied to both simulations and observations

Large-scale situation in July 2006 **CF**_{low} from T_{2m} from ERA-I 0.15 2006 July monthly anomaly 60 *comparing to 2006 – 2012 July* mean values; $x = above 1\sigma$ -0.15

- ✓ Heatwave occurs over Western Europe, with some variability of amplitude: the excess of T2 is about 4 to 5°C warmer than the mean, in France.
- ✓ Low cloud deficit with a very similar pattern as T_{2m} anomaly, but with no distinction between land and ocean.
- ✓ Circulation: SLP above normal; air advected over France comes **from North-East** of Europe (i.e. dry air)
 - → heatwave correlated to low cloud deficit, consistently with the direction of air circulation

Monthly anomaly at SIRTA

- ✓ T2 about 4.5°C higher than 2003-2012 mean, 2°C above 1σ, and more than for the analogs: the excess of T2 is not explained by large-scale condition alone;
- This heat-wave is detected in simulations
- ✓ Concerning clouds, important deficit
 - LW & SW cloud radiative effect (obs.)
 - Low clouds (simu.)
 - → deficits more important than what is expected for similar large-scale circulation conditions (« analogs »)

Day after day during July 2006

Measurements

The monthly positive anomaly of T2 is mainly due to a few days: from **July 15th to 27th** (obs. & simu.), above all analogs

almost zero

The soil is very dry, & drier than analogs, & 6 days before the heatanalogs wave → excess of sensibl

Simulations

wetter (precip.), and T2 decreases a little, and it increases

→ In the first days of the deficit, T2 increases, becoming higher than excepted; From July 19th to 23rd clouds appear and the first soil is

Elements of discussion

- ✓ Persistent clear-sky conditions; July 17th, sky completely clear. These clouds also missing around SIRTA (see CF from MSG sat.)
- ✓ Cloud that are missing have an important daily cycle (see analogs): clouds missing until July 20th could be low-level clouds, mainly driven by the boundary layer.
- ✓ High clouds from July 20th to 23rd, and also some low-clouds; after: clear sky again

Lidar profiles, D-day

T2m(D-day)-T2m(analogs) 15/07 17/07 19/07 21/07 23/07 25/07 27/07 29/07 DIF

RUC

CRE_{sw} 15/07 17/07 19/07 21/07 23/07 25/07 27/07 29/07

Conclusions

- ✓ July 2006 heatwave not only explained by large-scale circulation conditions, even if the weather regimes are *Blocking* and then Atlantic-low, two regimes that promote heatwaves (Cassou et al. 2005).
- ✓ This heatwave explained by two concomitant
 - Particularly high SLP over Southern Scandinavia that favors clear sky
 - A dry soil which amplifies the surface temperature, making it higher than usual especially during the third week of July.
- **→** Using advanced observations combined with meso-scale model may help in the understanding of extreme events
- → An anomaly which is important enough to be detected at a seasonal scale is actually explained by a few days and partially by local processes

- **DIF**: difference between D-day and analogs explains the part of T_{2m} anomaly due to large-scale circulation conditions \rightarrow part of T_{2m} anomaly due to soil dryness can reach several degrees.
- ✓ Dry soil contributes to amplify T_{2m} anomaly in the first 5 days of heatwave only, during a "blocking regime"
- event ✓ Dry soil not responsible of cloud deficit